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The Euler-Maclaurin Expansion for the Simplex* 

By J. N. Lyness and K. K. Puri** 

Abstract. A natural extension of the one-dimensional trapezoidal rule to the simplex 
0 _ xi _ 1, E xi < 1, is a rule Rf which uses as abscissas all those points on a hyper- 
rectangular lattice of spacing h = 1/m which lie within the simplex, assigning an equal 
weight to each interior point. In this paper, rules of this type are defined and some of their 
properties are derived. In particular, it is shown that the error functional satisfies an Euler- 
Maclaurin expansion of the type 

Rf - If - Aih + A2h2 + * + Aphv + O(hv+') 

so long as f(x) and its partial derivatives of order up to p are continuous. Conditions under 
which this asymptotic series terminates are given, together with the condition for odd terms 
to drop out leaving an even expansion. The application to Romberg integration is discussed. 

1. Introduction. In the theory of Romberg integration, the Euler-Maclaurin 
expansion 

P-1 

(1.1) Rim aIf - If = E a /m2 + Epm alf 
q=1 

plays a fundamental role. Here, R m'a ] stands for an m-panel (offset) trapezoidal 
rule approximation (see (2.1) below) to 

f1 

(1.2) If = J f(x) dx, 

the quantities a, are independent of m, and the remainder term satisfies the order 
relation 

(1.3) Epm aIf O(m ). 

In addition, when f(x) is a polynomial of degree d or less 

(1.4) a. = O, q > d, 

and 

(1.5) Ep[ alf = 0, p > d. 

Also, in the case where R [ma If is a symmetric rule, i.e., the midpoint (a = 0) or 
the endpoint (a = 1) trapezoidal rule, it can be shown that 
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(1.6) aQ = 0, q odd. 

The results given above are very well known and occur implicitly or explicitly in 
many papers about Romberg integration such as [3] or [4]. An exhaustive list of such 
papers is given in a recent survey article by Joyce [5]. 

It is a straightforward matter to generalize these results to apply to integration 
over an s-dimensional hypercube. With certain self-evident modification of notation, 
the difference between product trapezoidal type rule approximations and the integral 
over the hypercube is also described by an expansion of type (1.1). The statements 
embodying Eqs. (1.3) to (1.6) are also valid in this wider context. In the case of (1.6), 
the symmetry required is in each one-dimensional trapezoidal rule which is used to 
form the product. The theory for the hypercube is given in Baker and Hodgson [2]. 
In this paper, we are concerned with obtaining analogous results for the simplex. 
To this end, we introduce the simplex weighted product trapezoidal rule. In the case 
of the right-angled triangle 

A2; X >-O; y-O; X + y < 1 

this rule is of the form 

1 o c 
(+ ta k + t i2) 

Rf - 
-2 E ke Oi,kf J 

the 0i, k taking the value 1 if the abscissa is strictly within the triangle and zero if the 
abscissa is strictly outside the triangle. The specification of Oi,k if the abscissa lies 
on an edge of the triangle is discussed in detail below. 

We assume that f(x) has a sufficient number of continuous derivatives and derive 
analogues of the various results mentioned above. The principal results are derived 
in Sections 4 and 5 and are embodied in Theorems 4.29, 5.10 and 5.15. In Section 6, 
we discuss the polynomial degree of these rules and we discuss some of the simpler 
two- and three-dimensional rules in Section 7. Like the one-dimensional trapezoidal 
rule, individually, these rules are-not particularly useful in practice. However, they 
are powerful when used as the basis of Romberg integration. This is discussed in 
Section 8. 

2. One-Dimensional Notation and Results. This section is devoted to establish- 
ing a basic notation and to restating certain known results which will be employed 
later on. We define a one-dimensional trapezoidal rule operator for an arbitrary 
interval [a, b] as follows: 
(2.1) R [m.al [a b]f(x) - 1 cof~x,) 

where 

(2.2) xi( 1 + ta)/m 

and 

(2.3) ta = (1 + a)/2, alo < 1. 

Essentially, 0,= 1 when a < x; < b and 0, = 0 when x, lies outside the interval. 
To take care of the cases when x, lies at a or at b and the special case when b = a 
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(and even the case when b < a which is not used subsequently), we define 0i as follows: 

sgn(x) = x/1Ix, x # 0, 

(2.4) = 0, x= 0, 

0, = '(sgn(xi - a) - sgn(x -b)). 

In the cases which arise in this paper (a ? b), we find 

0A = 1, a <xi < b, 

(2 5) H~~~~i = l xi a < b or a < b =xi, (2.5) O 2~ ,abr ~~, 
O= O, a= b, 

0, = 0, otherwise. 

We shall write 

(2.6) R m a [a, b]f = R m, [a, b]f(x) 

and 

(2.7) R [m, a]I = R m, a I[O I ]f 

in cases where no confusion is likely to arise. This notation is entirely consistent with 
the notation used in previous papers [6]. However, the superscript m has geometrical 
significance only as an inverse step length 

(2.8) m = 1/h 

and corresponds to the number of panels only in the case that the interval [a, b] 
happens to be of unit length. 

In a corresponding manner, we define 

rb 

(2.9) I.[a, b]f(x) = I[a, b]f = f f(x) dx. 

In the sequel, we require the generalization of the Euler-Maclaurin summation 
formula given in (2.10) below. This is proved in Lyness [6, p. 62]. (Note that this is 
not simply a scaled version of the conventional Euler-Maclaurin expansion. In this 
generalization, the length of the integration interval [a, b] is not an integer multiple 
of the spacing 1/m between function values.) This is 

Rm al [a, b]f - I[a, b]f 

(2 . 10) P= 1 Bq(ta -mb) 1 _ Aq(ta -ma) 1 (a)} + E '[a b]f 

where 

E 'ma [a, b]f = R fp(ta -mb) f(P-l)(b) _ p(ta - ma) f(P 1) 

fb () Rp(ta - mx)d} 
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Here, the functions Bq(t) are periodic Bernoulli functions, which have unit period. 
Bq(t) coincides with the Bernoulli polynomial B,(t) in the interval 0 < t < 1, and 
takes the value I (Bq(1) + B,(O)) when t is an integer. We follow the notation used 
in Abramowitz and Stegun [1, p. 803 et seq.]. 

One property of the Bernoulli functions, which is fundamental to the work in 
Section 4, is that 

(2.12) (x) E C,-2(_ CO, CO) 

but that, for q > 1, the (q- 1)th derivative of Bq(x) is discontinuous at integer 
values of x. 

As it is written, the expansion in (2.10) is not in general an expansion in inverse 
powers of m because the coefficients such as Aq(tcx-mb) themselves depend on m. 
Because of the complicated character of this dependence, involving derivative dis- 
continuities, an asymptotic expansion in inverse powers of m cannot be constructed 
and so Romberg integration based on R , a ' [a, b]f cannot be justified. In the special 
case in which a = 0, b = 1, since mb and ma are integers, this dependence on m drops 
out. Expansion (2.10) then reduces to the conventional Euler-Maclaurin expansion 
which is an asymptotic expansion in inverse powers of m, and is the basis of Romberg 
integration. 

3. Product Trapezoidal Rules for the Simplex. We treat an s-dimensional 
simplex A8 defined by 

(3.1) As x 0, i = 1, 2, ... , s, x 1. 
i 1 

In two dimensions, this is the right-angled triangle having vertices (1, 0), (0, 0), (0, 1). 
If the coordinates of a point satisfy 

(3.1a) xi > 0, i = 1, 2, .., s, xi < 1, 

we term the point an interior point. If the coordinates satisfy (3.1) but not (3.1a), 
we term the point a boundary point. We denote the integral of f(x) over the simplex by 

(3.2) IA8! = A (x1, x2, X.) dxA dx2 ... dxs. 

This integral may be expressed in terms of the one-dimensional operators of Section 2 
in various ways depending on the coordinate system used and the order of integration. 
If one uses the coordinate system (3.1), one finds s! different orders of integration 
are available. For example, in two dimensions one may write 

(3.3) IAJ = IM[O, ]IW[o, 1 - x]f(x, y) 

or 

(3.4) IAJ = I[0, l]Io[0, 1 - y](x, y). 

We are interested in quadrature rules which are natural extensions of the one- 
dimensional trapezoidal rule. Relations (3.3) and (3.4) suggest quadrature rules of 
the form 
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(3.5) R12f = RImL aLI[O, I]RRm2 a2][O, 1 - x]f(x, y), 

or 

(3.6) R21f = R m2 . a 21[O I ]R [mn,, a1 ] [O, 1 - ]f( 

Both of these rules are referred to subsequently as "basic simplex weighted product 
trapezoidal rules." This term is defined below in Definition 3.13. 

Applying definition (2.1) we find that 

mIm2 o co 
i / + tat j + ta 

where Oi, i has to be determined from (2.1). The form of i, i is 

(3.8) i;= OW(i) 

where 

(3.9) 0i = 0, 2, 1, 

depending on the position of (i - 1 + taL)/m, with respect to the interval [0, 1] and 

(3.10) O(i) = 0, II 1, 

depending on the position of (j - 1 + ta2)/m2 with respect to the interval 
[0, 1 - (i - 1 + tai)/mlJ; 

Clearly, for interior points Oi, i 1 and for exterior points Oi, i = 0. However, 
for points on the boundary, one can obtain some unexpected values of 0, i. This is 
discussed in more detail in Section 7. For the moment, we remark that in the case 

(3.11) ml = M2 = m, taL = ta2 = 0, 

the rules R12f and R21f are actually different from each other. The respective weighting 
factors i, i are listed in Table 7.6. However, this inconvenience does not always occur, 
even if boundary points are involved. If in place of (3.11), we assign 

(3.12) ml = M2 = m, a = a 2' 

then R12f and R21f given by (3.5) and (3.6) are identical. This rule has points having 
weighting factor I on the boundary x + y = 1. 

Definition 3.13. A basic simplex weighted product trapezoidal rule for the 
s-dimensional simplex A, is a sum of function values of the form 

R[n"~al][0, ]R M2 a2 [2, 1 - Xl]R[,3' 3][0, I - X X2] 

(3.13) 1 

... R[maaa] 0, I- Xi Xl, X2, I x8) 

or a similar sum in which the variables x1, x2,, x* are permuted in the rule operators 
(but not in the function arguments). Here, A. is defined by (3.1) above and the con- 
stituent one-dimensional trapezoidal rule operators are defined by (2.1) above. 
The basic simplex weighted product trapezoidal rule Rf enjoys the following properties: 

(1) All abscissas lie on a rectangular grid which includes points of the form 

(tai + kD)/m1, (taa + I(2)/m2, ... , (tail + kj)/m8, 



278 J. N. LYNESS AND K. K. PURI 

where k, are positive or negative integers or zero. (The values of ta, (Ci + 1)/2 
and mi are specified in (3.13).) 

(2) The weight attached to each abscissa is 

Ok/(ml m2 ... *M8) 

where Ok = 1 if the point is strictly inside A. and ok = 0 if the point is strictly outside 
A8s. 

(3) The value of Ok when the point is on the boundary of A. is determined from 
(3.13) and (2.1) and (2.4). However, it may take only one of the s + 2 values 

(3.14) 0 = 1, 1/2, 1/4, * , 1/28 or 0. 

Some examples of basic simplex weighted product trapezoidal rules in two and 
three dimensions are given in Section 7. It appears that they are not usually symmetric 
and that there are other more natural rules which satisfy properties (1) and (2) but 
not property (3). We refer to these simply as follows. 

Definition 3.15. A simplex weighted product trapezoidal rule Rf is a sum of 
function values satisfying properties (1) and (2) above. An example is the symmetric 
sum 

(3.16) Rsf = l(Rl2f + R21f) 

defined by (3.5) and (3.6) above with ml = M2 = m; ta. = ta2 = 0 as in (3.11). This 
rule is not basic as it does not satisfy property (3) and cannot be expressed in form 
(3.13). However, it does satisfy properties (1) and (2) and is in addition symmetric 
in the interchange of the x and y coordinates. 

Finally, we remark that our present interest in basic rules derives solely from the 
circumstance that we can prove our results directly and generally for these rules. 
Once this is done, it is sometimes possible to use these results to derive the corre- 
sponding results for the more general rules which do not satisfy property (3). This 
approach is employed in Section 7. 

4. An Euler-Maclaurin Expansion for A8. We are concerned here with deriving 
the Euler-Maclaurin expansion for the basic simplex weighted product trapezoidal 
rule over an s-dimensional simplex. We carry out the derivation for the case s = 3 
only. The method generalizes in an obvious way. We therefore investigate the dif- 
ference between the rule sum 

(4.1) Rf = R 'all [O, I]R'm2 a2][O, 1 - x]R[m3 a3] [0, 1 - x - y]f(x, y, z) 

and the integral 

(4.2) IA3f = lo', l]IV[O, 1 - x]IZ0, 1 - x - y]f(x, y, z) 

which the rule sum (4.1) is supposed to approximate. 
In this paper, we shall assume that f(x) and all its partial derivatives of total order 

p or less are continuous in all variables within and on the boundary of the simplex A.. 
We are interested principally in the case in which the spacing h = 1/rm is the same in 
each direction, that is 

ml - M2 = m= =m. 
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However, the derivation is marginally more general and allows an assignment of 
the form m3 = k32m2; m2 = k21m1, where k32, k2l are integers. The quantity k3l = 

k32k2l = m3/m, also occurs in the result. 
The statement that a term is O(m- ) is taken to mean that it is O(m-v) where i may 

be 1, 2 or 3. A situation is implied in which the values of mi become infinite in a manner 
in which k32 and k2l remain constant. We commence by applying (2.10) to form an 
expansion for 

(4.3) sp(x, y) = RZm3 [0, 1 - x - y]f(x y z) 

This gives 
p-1 

(4.4) so(x, y) = E cq3(x, y)/mI3 + CP(x, y)/ml, 
q3= 

where 

rl-X-V 
cO(x, y)A= f(x, y, z) dz, 

qa3(ta. - m3(l - X - y)) a a3 (4.5) c113 (X I' A 0 ~ f(X, y, z) 

R (3ta 3) (da3 -1 
q3 _ > 

and 

(4.6) (Cp(x, y)I < K. 

The next stage would be to apply the same expansion (2.10) to 

R M2.a2 [0, 1 - X](p(X, y). 

Unfortunately, this is not possible because the function sp(x, y) is not continuous in 
the variable y. This is obvious from its definition (4.3). As y is increased, the rule 
sum in (4.3) abruptly requires an additional function value. This is reflected in the 
coefficients cq(x, y) as these involve Bernoulli functions AP(t) which have discontin- 
uities in the (q - 1)th derivative at t = 0, 1, * * . In order to overcome this difficulty, 
we synthesize each function Cq3(xI y) as follows 

(4.7) cs3(x, y) = aq3(x, y) + bQ3(x, y), 

where 

ao(x, y) = c0(x, y); bo(x, y) = 0, 

a4.8 (x *~) Ba3(ta. + m3ta2/m2 + m3ta /rn) a X f(x, Y, z) 
(4.8) q3! ) z=1-|-_ 

Aq3(taJa) O3-1 

q3! (Z13-1 
X, Y, Z) 

-0O 
q 
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and 

b A(, ) 
(G - 

M3(1 - X- y)) 
_ 

q(ta + m3ta2/m2 + m3ta./Mj) 
bqs~xs y = l S s q3! q3! 

(4.9) (13- l 

XZ f(xyz)A =1 q3Z? 1. 

This synthesis depends on a, and a2, The functions aq3(x, y) have continuous deriva- 
tives of order up to p - q3 + 1 and the functions b,3(x, y) contain the inconvenient 
discontinuities in the derivatives. In the subsequent part of the summation, each 
point (xi, y3) for function evaluation has the form 

(4.10) (Xi, Yi) = ( - a X 
- m ta2) 

For these points, the Bernoulli functions in (4.9) are identical and so 

(4.11) bQ3(xi, Yi) = 0. 

Consequently, 

(4.12) R[mal][O, 1]Rlm21a2l[0, 1 - X]bq3(X, y) = 0. 

We may then replace c, 3(x, y) in (4.4) by its synthesis in (4.7) and, using (4.12), we 
find at once that 

P-1 

Rf = E - R[m al][O, 1]R[m2,a2 [0, 1 - x]aq,(x, y) 
(4.13) sO3=03 

+ ;-R[mlal][O, 1]RIm2na2 [Oa 
1 - X]Cp(X, Y) 

in3 

The final term is of order m-' and forms part of the ultimate remainder term. The 
functions all(x, y) have continuous derivatives up to order p - q- 1. We are now 
ready to carry out the second stage of the calculation which consists of using (2.10) 
to expand 

(4.14) R 1- 
a2][O 1 - x]a,.(x, y). 

Proceeding in an identical manner, we find 

R m2,a2][O, 1 - x]a13(x, y) 

(4.15) P-31CC x)2 W CP_22(x) (4.15) pq3-l 
cQ2,Q + p q3 = 0, 1, ,p-. 

92=0 m2 2 m 
P9 

M2 2~ 

Here, Cp q, ,3(x) is bounded and the other coefficients may be expressed in the form 

(4.16) c. 2,3(x) = a.2 ,.(x) + bQ2,93(x) 

with 
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t1-x 

aoga (x)W f aa (x, y) dy; boq.(x) = 0, 

(4.17) a ag(X) = Ag(t2 + mita,/m) -a- ag,(x, Y)I 

CIO 
Styal a,,(Xl Y)| , q2j>1 

q2! C1Yq2-i 1T 

and 

(4.18) b .(X) - Ag, (taa - m2(1- - X) (taa + 
m2ta/ml) 

bagiaoW ~ ~~gx,.,, 
(4.18) q2! 

X 0 aq-2- a,,(X, Y)| I_2 q2 k1 

The function aQ2,Q3 (x) has continuous derivatives of order up to p - q2-q3 + 2, 
while 

(4.19) R[ 1-al([O, 1]bQ O,(x) -0. 

Substituting these expressions into (4.13) gives 

P-1 
(4.20) 

+ 
E Q -,R 0 ]Pa,,X 

+ 
I 

R 1Oa [0, I]R [0a,2 1 - x]C,(x, y). 

The final p + 1 terms here are remainder terms of order m- ". The final stage, that of 
evaluating R^l .l aQg ga(X), is straightforward since there are no complications 
arising from a variable interval length. We use (2.10) again to obtain 

-Q2-Q]-1 agx,, a,, Cp.gaggga 
R~n~c"'(0, 11a,.2 (x) + p-ag 

(4.21) RX Ma I ? ~Qf~)= a h + MV-0-as 
10 

q2 = 0, 1, * * * ,p - - 1, q3 = 0, 1, * * * ,p-1, 

where Cp-,2_Q3.Q, ,g is bounded and 

(4.22) a = g(! fdxa . 2 C.ai Q1aQ2aQa qj! OXQ1'1 a,,,x)-i - x~ai a,,,x) 

Substituting (4.21) into (4.20), we find 

P-1 P-ga-i P-ga-ga-i 

(4.23) Rf a z aQ,2,gqam/m 2 M3 + Ef, 
Qa-O Q2-0 Q1g0 

where 
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P-1 P-1Q3-1 C 2P-1 
1 mi a 

Ef = Z E 
' 2Q3_2,Q3 

+ E 1 Rm l'[0, 1]CP-a3.a3(X) 
(13=0 2=0 

P 1'2 2 (3 (12 Q13 1 =0 
13 P ( 

(4.24) qZ=O 1 =M2 m3 Q30 i3 i2 

+ mP RzR [0, I]Rm [0, 1 - x]CP(x, y). 

Since the functions and operators occurring here are bounded, we may write 

(4.25) IEfI < km P. 

To avoid unnecessary complication, we state the theorem for the case 

(4.26) ml = M2 = M3 = m . 

We note from the definitions which lead to the constants a Q, Q2, Q39 namely (4.22), 
(4.17) and (4.8), that 

(4.27) ao,o,o = IA3f 

and that 

(4.28) aal,12Q3) q1 + q2 + q3 < p, 

are independent of m. We also note that the remainder term Ef given by (4.24) consists 
of the sum of a finite number of terms, each of which is of the form C/mp where 
C is bounded. This leads to the theorem. 

THEOREM 4.29. 
P-1 

(4.29) Rf - IA^f = E AImn' + Ef, 
Q=1 

where Rf and IA 3f are given by (4.1) with ml = = m3 = m and (4.2) respectively, 
the quantities A,,, q = 1, 2, ** , p - 1, are independent of m and 

(4.30) Ef| < kmiP. 

Here 

a -a-1 

(4.31) A(,= E EZa(,, 2,Q-12. 
Q1=O Q2=0 

5. The Coefficients A l. In this section, we look in some detail at the structure 
and properties of the coefficients A, which occur in the Euler-Maclaurin expansion 
(4.29). These are functions of the rule parameters a,, a2, * * *, a, and depend also on 
the function f(x). In view of the possible application of this expansion in Romberg 
integration, we are particularly interested in the circumstances under which certain 
coefficients vanish. 

The principal results of this section are given in Theorems 5.10 and 5.15 below. 
These state that the expansion terminates if f(x) is a polynomial and that the odd 
coefficients are zero if all the constituent one-dimensional trapezoidal rules are 
symmetric. 

It is difficult to write down a closed expression for A, in conventional notation 
which is not unduly cumbersome. We content ourselves with a recursive definition 
embodied in Eqs. (5.1) to (5.5) below. For notational convenience, we define 



THE EULER-MACLAURIN EXPANSION FOR THE SIMPLEX 283 

i-l i 

(5.1) = 1 - xi; 1= E kiltty; X0 = taj 
t =11= 

where, as before, kil = mi/mi. Then, following through the definitions of Section 4 
in an s-dimensional rather than a 3-dimensional context, we find the following 
recursive definition of aQ, q . : 

(5.2) a(xj, x2, , XS) = f(x1, x2, , 5s), 

aqgat~,..,aSxlsX2, * * Xt-1) 

(5.3a) B(A)d a a + 

w(X15 x25 .. *, 
Xt) 

g 

qt! a xq t _1 alt+l,.It+2, ..Q8 ( 

q t xt =0A . 

When qt = 0, this is interpreted as an integral, i.e., 
A t 

(5.3b) ao t+1,-,(jx1 X25 , * = f at+, X2 *, xt) dxt. 

Since X1 = = ta., the final stage, that having t = 1, may also be simplified. Thus, 

(5-4) a , = q2 0',Qs a, 3.. ,(xj) Al. 

Finally, 

(5.5) mAa, 1, E 1 aqw2, <1 

~2qi =q 

the sum being taken over all distinct sets of nonnegative integers qj whose sum is q. 
LEMMA 5.6. If f(x) is a polynomial of degree d, then 

a(21 022, (28 = 0 when E qt > d + s-1 
t =1 

Proof. In this proof, the statement that a function is a polynomial of degree d' 
assumes its usual meaning when d' > 0 and assumes the meaning that it is identically 
zero when d' < 0. 

Let us suppose that the function a,,, + ... a(X1, * t , xt) is a polynomial of degree dt. 
One term in the subsequent function in (5.3a) is obtained by differentiating qt - 1 
times and replacing one of the variables xt by a linear sum uti of the other variables. 
The other term is obtained in the same way, except that lit is replaced by zero. Thus, 
the subsequent function is a polynomial of degree d,1 satisfying 

(5.7) dt-1 _ dt -aqt + 1. 

In the case in which qt = 0, examination of (5.3b) yields the same result (5.7). 
Thus, if f(x) in (5.2) is of degree d applying (5.7) (s - 1) times shows that the 

degree di of aq2 ..., a(X1) satisfies 

(5.8) d, ? d- Z qt + (s- 1). 
t -2 



284 J. N. LYNESS AND K. K. PURI 

However, the integrand in (5.4) is zero if 

(5.9) dl < ql. 

The simple consequence of (5.8) and (5.9) is the statement of Lemma 5.6 above. 
Finally, since A, is a sum of these coefficients having E qt = q, there follows 

THEOREM 5.10. When f(x) is a polynomial of degree d, 

(5.10) A2 = 0, q > d + s-1, 

Theorem 5.10 represents a major difference between the theory as applied to the 
simplex given here and the corresponding much simpler theory for the hypercube. 
In the expansion for the hypercube, (5.10) is replaced by 

(5.11) A2 = 0, q > d(hypercube). 

The difference arises at the point where the variable limits Aui are introduced (definition 
(5.1)). For the hypercube, one would replace Aui(xl, x2, *.. , xi-,) by Ai = 1. This 
has the effect that (5.3a) could be replaced by an integral analogous to (5.4). Then 
(5.7) would be replaced by 

(5.12) dt-1 < dt - qt (hypercube). 

This adjustment, being necessary only (s - 1) times, accounts precisely for the 
discrepancy between (5.10) and (5.11). Incidentally, the formalism given here is quite 
unnecessary to derive similar results for the hypercube. 

The effect of the constituent trapezoidal rules being symmetric is much easier 
to gauge. First, we recall that the odd Bernoulli functions satisfy 

(5.13) Bq(n) = Aq(n + 2) = 0, q odd, n integer. 

In (5.3a) if it happens that Bq(?4) = Bq(X?) = 0, then the function defined by (5.3a) 
is zero and so subsequently is aq, 2,..., One of the many possible cases in which 
this happens is covered in the following lemma: 

LEMMA 5.14. If 2ta, i is an integer for i = 1, 2, , s, and qt is odd, then 

a'. 02 , ,a -8 ?0. 

In expression (5.5) for A,, we see that if q is odd, then each term in the sum on the 
right must contain at least one odd subscript. Thus 

THEOREM 5.15. If each constituent rule R " a1] in a basic simplex weighted 
product trapezoidal rule is either a midpoint rule (ax = 0) or an endpoint rule (xi = 1), 
then 

Aq = 0, q odd. 

6. The Polynomial Degree of R(m'f. A natural question to ask about a quad- 
rature rule is whether or not it is exact for f(x) = constant, i.e., is it of polynomial 
degree zero? In this section, we show that the basic simplex weighted product trape- 
zoidal rules for the simplex are in general not of degree zero, though there are some 
exceptions to this statement. 

In this section, we restrict ourselves to cases in which m = ml = m2 = *= mi. 

We denote by R ('m)f an s-dimensional basic simplex weighted product trapezoidal 
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rule of type (3.13). We note that Theorem 5.10 warns us that we might expect a 
situation of this type. This states that when f(x) = 1, i.e., is a polynomial of degree 
zero, then A, = 0 for q > s - 1. Thus, 

(6.1) R (M)f- If =A+ A2+...+ A- 

In the 'symmetric cases' covered by Theorem 5.15, the terms Al/m' with q odd drop 
out. But there is no other reason to believe that, in this rather special case with 
f(x) = 1, any of the terms in (6.1) should be zero. And if they are not zero, then 
R (m )f differs from I, j and is not of degree zero. 

The results of this section are Theorems 6.4 and 6.6 below. We treat the case 
s > 3 first. The result in Theorem 6.4 below is proved by means of two lemmas. 

LEMMA 6.2. For s > 3, R (m)f, m = 1, 2, is not of degree zero. 
Proof. Using properties (2) and (3) of Section 3 and Eq. (3.14), we have 

R f - Z Okf (Xk), M k=i 

where 

Ok = Xk/2, Xk = integer. 

Thus, when f(x) = 1, it follows 

I'Af = I/s!; R(m)f = X/(2m)8, X = integer. 

If IAJ is to equal R (m)f, then 

X = (2 m)8/s! 

must be an integer. If s ? 3 and m = 1 or 2, this is clearly impossible. This establishes 
Lemma 6.2. 

LEMMA 6.3. If R (m )f is of degree zero for s - 1 distinct values of m, then it is of 
degree zero for all m. 

Proof. Let Al, A2, , As- stand for the values of the coefficients in the case 
that f(x) = 1. Then, if the s - 1 distinct values are ml, M2, , m.81, we have 

s-i 

0 - R(mi) - A = Z AS/mT, i = 1, 2, * , s- 1. 

This is a set of s - 1 linear homogeneous equations in s - 1 unknowns Ai with a 
nonsingular coefficient matrix. This has the unique solution Al = A2 = = 

AS 1 = 0. Consequently, 

s-i 

R(m)f - IA-f = Ai/m7 = 0 all m. 
2 =1 

The immediate consequence of Lemmas 6.2 and 6.3 is 
THEOREM 6.4. For s > 3, the basic simplex weighted product trapezoidal rule 

R (m)f is of degree zero for at most s - 2 special values of m. 
The two-dimensional case requires special treatment. Theorem 5.10 gives, for 

f(x) = 1, 
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R(n) f- If = A,/m 

and Theorem 5.15 shows 

(6.5) A 0, ta=O,. and ta2= ?,2 

However, a direct evaluation of Al when f(x) = 1 leads to some other cases in which 
Al is zero. We find 

A1 = Ai(ta2 + ta.) - .l9(tai) - Bli(ta2) (f(x) = 1; s = 2), 

where 

,(X) = X- 20 < X <1, 

A1(x + 1) = B1(x), all x, 

B = Ba() = 0. 

This leads to 

A1= 0, tal 0, any ta, 

Al =?, ta2 2 0, any t.1, 

A1 = 0, tal + ta2 = 1. 

These include (6.5) above. In fact, these are precisely the cases in which the rule R (1f 
includes a boundary point, thus making it possible for R(1f - _ = If. 

THEOREM 6.6. When s = 2, R (m )f is of degree zero if and only if either ta. = 0 

or ta.2 = 0 or tail + ta2 = 1. 

7. Examples of Two- and Three-Dimensional Rules. Up to this point, we have 
considered only families of basic rules defined by product one-dimensional operators 
of form (3.13). This restriction arose simply because only in these cases is any reason- 
ably general method for establishing the Euler-Maclaurin expansion known to us. 
In this section, we consider, in certain very special cases, the rules obtained using a 
different, intuitive approach. This discussion is limited to 'centre' rules and 'vertex' 
rules and is also limited to two- and three-dimensional simplexes. 

Definition 7.1. A two-dimensional vertex rule is one of the form 

I m m-i 

(7.1) R(M)f 
1-2 

E E 
r 

iAim, j/M) rn T= j=O 

where 

(7.2) 0i, = 1, (i/rm, j/rm) is an interior point. 

The main interest centres on the definition of j, i when (i/m, j/m) is a boundary point. 
Two examples of two-dimensional vertex rules have been considered in the previous 

sections. These are 

(7.3) R (M) f = = R [MlI[0, ]Rm' lI[0, 1 - x]f(x, y), 

(7.4) R(M)f = R[ MlI[0, I]Ri'4" [0, 1 - y]f(x, y). 



THE EULER-MACLAURIN EXPANSION FOR THE SIMPLEX 287 

As mentioned in Section 3, these are different from each other. A 'natural' rule may 
be obtained using various intuitive approaches. The grid lines divide the simplex into 
squares and right angled triangles. If we assign to each square the weight Im2 at 
each corner and to each triangle the weights 4m, _m2, Lm2 at the right angle vertex 
and the other two vertices, we obtain a natural rule R'r)f. It appears that 

(7.5) R(M)f rn (R(m)f + R(m f). 
R8 2j = + R2j ) 

The weight factors 6ii are listed in Table 7.6. 

TABLE 7.6 

R~lm) R'm) R'm) 

interior 1 1 1 
edge but not vertex 2 

vertex (0,0 ) 4 4 

vertex (1, 0) I 0 1 

vertex (0, 1) 0 4 8 

We make the following remarks: 
1. All three rules are of polynomial degree zero. None is of polynomial degree 1. 
2. All three have an even error expansion of the form 

(7.7) R(m)f - IA2f = A2/m2 + A4/m4 + *.. 

3. Since 

R(m)f = R12f + 8 (f(O, 1) - f(1, 0)) 
(7.8) 

= R21f- 82 (f(0 1) - f(l 0)), 

the coefficients A4, A6, , in (7.7) are the same for all three rules. The coefficient A2 
differs from one rule to another according to (7.8). 

Definition 7.9. A three-dimensional vertex rule is one of the form 
( m r-i m-i-i k 

(7.9) R (M) f = _3 E E E 0-1,ifm' 'm) 

where 

(7.10) Oijk = 1, (i/rm, j/rm, k/rm) is an interior point. 

The previous sections provide six examples. These are 'basic' rules of form (3.13), 
namely 

(7.11) R(Mj),kf = R M'' [O, 1]R7' ,' [0, 1 - 
x,]Rk''][0, 

1 - Xi - Xj]f(X1, X2, X3) 

where { i, j, k} is a permutation of { 1, 2, 3 }. It turns out that these rules are identical 
in pairs; thus, 

(7.12) R ,mkf = R j ) 
kJ 
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The weighting factors Oi, i, k corresponding to these rules and to another rule Rim) are 
listed in Table 7.13. Here, we have used the following abbreviation: 

Face* = Face but not edge, 

Edge* = Edge but not vertex, 

a' = Xl + X2 + X3- 1 

TABLE 7.13 

RI` or R" R" or Rfm) Rfm) or Rfm) R(m) 

interior 1 1 1 1 
Face* xi = 0 2 2 2 2 

Face * a = 0 1 1 1 1 Face* i=0~ ~ ~~2 2 2 2 
_ ~~~1 1 

1 Edge* x = xi = 0 4 4 4 

Edge* = xl = X=O 0 5 5 

ff = X2 = ? 14 ? 4 36 

cT = X3 = 0 1 4 0 5 

Vertex (0, 0, 0) 1 8 1 1 8 8 8 8 
1 1 

(1, 0, 0) 8 0 0 72 

(0, 1, 0) 0 18 0 1 

1 1 
(0, 0, 1) 0 0 8 72 

The three product rules have an even expansion 

(7.14) R(m)f - I3f = A2/m2 + A4/m4 + ... 

However, they are not of degree zero. In fact, 

('M) ~1/12 
(7.15) R(,m ,kf - IA3f = 2 , f(X)= 1. 

Since this relation is satisfied by all three rules, it is also satisfied by their symmetrized 
sum 

(7.16) R(m)f = 1(Rm) f + Rm2)f + R(2m)f). 

The weighting factors for R'm) are not given in Table 7.13 explicitly. 
Because the rule R'm)f does not integrate the constant function correctly, a rule 

Rim) f which does integrate the constant function was constructed. The weight factors 
for this rule appear in Table 7.13. The specifications for this rule are as follows: 

(1) It should be of form (7.9). 
(2) It should be symmetric under permutations of the variables x, y, z. 
(3) Points which do not lie on the plane x + y + z = 1 should have the natural 

weighting factors 1, 1, 1, 1 according as they are interior, face, edge or vertex points. 
(4) Three other weighting factors 6F, 6E, a are assigned for points on the plane 

x + y + z = 1 according as they are face, edge or vertex points. 
(5) The rule should be of degree zero. 
This led unambiguously to the weights listed under R~f in Table 7.13. Note that 

conditions (1) through (4) are satisfied by a three-parameter set of rules including, 
for example, the symmetric rule R'm)f. The single condition (5) 
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(7.17) R-m)f = It 3f, f(x) = 1 all integer m, 

gives three linear equations in the three unknown weighting factors 6F, 6E, OV. 
There are other ways of setting up specifications which lead to the same rule. This 
rule is clearly not a linear combination of basic simplex weighted product trapeziodal 
rules as defined in (3.15). Thus, it is of interest to investigate its properties to see 
whether it has an Euler-Maclaurin expansion and, if it does, whether the coefficients 
satisfy Theorems 5.10 and 5.15. 

Direct examination of Table 7.13 gives 

(7.18) RN f - R jm)f = X, m R + X 2m-2R ['ml] + X3 -2R[m3, 

where 

(7.19) X 1 -X2 - 36 4, X3 3 T6, 

and sp(t) are one-dimensional functions defined by 

(7.20) (Pi(t) = f(0, t, 1 - t); 2(t) = f(l - t, 0, t); 93(t) = f(t, 1 -t, 0). 

Since both R'n) f and R in, 1 ] have even expansions in powers of l/m, so has RN'Mf. 
This establishes that Theorems 4.29 and 5.15 are satisfied also by RiM)'f. 

To proceed, we invoke the Euler-Maclaurin expansion for R [m ,] Thus, 
p-3 

(7.21) R[mi],P = E c /mq + E2[ l] 
q=o 

where 

(7.22) cat = A(1) f(q)) dt 

In view of Eq. (1.6), 

(7.23) a = 0, q odd. 

Also, if f(x) is a polynomial of degree d or less, so is s0(x) and so 

(7.24) a = 0, q > d. 

Collecting these results, we find 

(7.25) R 7) f - IA f = A4N)/m2 + AN)/m4 + ... 

where 
3 

(7.26) A&N) = Aq + E Xiac'2 
i = 1 

and Aq are the coefficients corresponding to Rfnmf. In view of Theorem 5.10 and 
(7.24) above, 

(7.27) A(N) = 0, q > d + 2. 

This establishes that the coefficients corresponding to the rule Rm')f also satisfy 
Theorem 5.10. 

The two- and three-dimensional 'centre' rules are not nearly so complicated. 
In two dimensions, the two rules 
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(7.28) Rmi)f = R[`'?][0, 1]RX[`7'?][0, 1 - xijf(x1, X2), 

with { i, j} = 1, 2} or { 2, 1}, coincide. They assign weighting factors 1 to interior 
points and I to points on the edge x + y = 1. There are no points on the other edges 
or at the vertices. This rule is of degree zero. 

In three dimensions, all six rules 

(7.29) R(,M)f = R[iM01 [0, 1]R[ M'01[0, 1 - xj]R[jm'?][0, 
1 - - X3]f(X1, x2, X3) 

coincide. There are no boundary points. This rule is not of degree zero, and there is 
no obvious 'natural' rule of this type. In fact, 

(7.30) R (m) f - IA.3f = -1-, f(x) = 1. 

An interesting point to notice is that, when m = 1, none of the points lie within 
the simplex and so 

(7.31) Rlf = 0. 

8. Romberg Integration. The natural application of these expansions is to 
Romberg integration for a simplex. In general, one chooses a set of mesh ratios 
M0, m1, M2, ... and constructs a Romberg T-table of the following form: 

T 1 T 

(8.1) To T1 

To Ti T2 

To Ti T2 T3 

The elements of the first column are obtained from 

(8.2) To = R(mi)f 

and elements of subsequent columns using 

(8.3) p= Tp_1 + -kJTp- Tn_1). 

If, as is usually the case, R (m)f - If has an even expansion, then 

(8.4) k, ,p = mk/(mkk+ - mk). 

If one had chosen a rule for which the expansion is not known to be even, a situation 
which is avoided in practice, then 

(8.5) Ak . = mk/(mk+2 - Mk). 

In the one-dimensional case in which a standard choice of the symmetric rule R [m If 

in (8.2) is made, each element Tpk in the table represents an approximation to If of 
polynomial degree 2p + 1. This follows quite simply from (1.4) and (1.6) namely, 

(8.6) aq = 0, q > d, 

(8.7) aq = 0, q odd. 

In the case of integration over a hypercube using product symmetric trapezoidal 
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rules, the same result holds. See for example Baker and Hodgson [2]. 
However, in the case of the s-dimensional simplex, (8.6) and (8.7) have to be 

replaced by 

(8.8) Aq = O, q > d + s- 1, 

(8.9) Aq = 0, q odd. 

This leads to the following theorem: 
THEOREM 8.10. If R(m)f is an s-dimensional basic simplex weighted product 

trapezoidal rule of type (3.13) having an even expansion (ai = 0 or 1), the elements 
Tk of the T-table (8.1j defined by (8.2), (8.3), (8.4) are of polynomial degree 

D = 2p + 2-s. 

The only significance of a negative value of D is that the result is not exact when 
f(x) = constant. A corresponding theorem of little present practical interest applies 
to the case where the Euler-Maclaurin expansion is not an even expansion. This is 

THEOREM 8.11. If R (m)f is an s-dimensional basic simplex weighted product 
trapezoidal rule of type (3.13), the elements Tk of the T-table (8.1) defined by (8.2), 
(8.3), (8.5) are of polynomial degree 

D = p + 1 - s. 

These theorems depend only on the results embodied in Theorems 4.29, 5.10 
and 5.15. Since the two-dimensional rule R(m)f given by (7.5) and the three-dimensional 
rule Rkm)f given in Table 7.13 have Euler-Maclaurin expansions whose coefficients 
have the properties described by these theorems, these rules may be also used as a 
basis for Romberg integration and the elements of the T-table have the same degree 
as that given in Theorem 8.10. If Romberg integration is to be used, it appears that 
the use of Rim)f rather than R(')f requires marginally more function values. The 
only gain seems to be that the first column is exact in the special case in which f(x) = 
constant. There is no obvious reason for believing any other elements of the T-table 
are more or less accurate in any general case. 

So far as comparing Rm')f and R`)f is concerned, the situation, though rather 
trivial, does have one point of interest. All elements in the T-table other than the 
first column are identical. A moment's reflection indicates that these elements are 
actually independent of the values of f(l, 0) and f(O, 1) and f(O, 0) since these occur 
in every rule sum with coefficient k/M2 and are automatically eliminated at the first 
eliminating stage. So if Romberg integration is to be used, and elements of the first 
column are not going to be taken seriously, then the rule 

(8.12) R (M) = R)f I - (f(0, 0) + f(I, 0)) 

gives identical results to R m'f, but requires two fewer function values. Using a 
criterion based on error per number of function values, a rule which does not integrate 
f(x) = 1 exactly shows up to advantage over one which does. There are other very 
special cases in which a rule which is not symmetric but which has an even expansion 
may be useful. Suppose, in three dimensions, 

(8.13) f(x, y, z) = so(x, Y, z)/(x + y- 1), 
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where sp(x, y, z) is easily evaluated and is zero on the plane x + y- 1 = 0. The 
rule R([)f does not require function values at points for which x + y = 1 and so the 
inconvenience of special coding for this case would be avoided. 

There is another rather interesting phenomenon which occurs when Romberg 
integration is used for the three-dimensional simplex using the centre rule (7.29). 
If the mesh sequence nO, Ml, M2, ... includes 

(8.14) MO= 1, 

we find 

(8.15) T = R (1) =0, 

an approximation obtained at the cost of no function values at all. A natural immed- 
iate reaction would be to ignore this and to choose a different mesh sequence. However, 
if one considers To as an intermediate quantity which will be combined with To to 
form To, it appears that there is no reason to disregard it at all. In particular, if 

(8.16) ml = 2, 

we find 

(8.17) To = R12f = 4 , 4 4) 

and 

(8.18) T? = To- 3(To - To) = 16(4, 4 D4) 

Since the point (4, 4, 4) is the centroid of the tetrahedron A3, this is an approximation 
of degree 1 in accordance with Theorem 8.10 and, clearly, a more appropriate approx- 
imation than To, although the same number of function values is involved. The effect 
of the approximation To = 0 in the Romberg table is only to adjust the ratios in which 
the other approximations To are combined by the procedure in such a way as to 
ensure the proper polynomial degree of the other elements. 

9. Concluding Remarks. The principal results given in this paper are very 
simple in structure. Essentially they are embodied in only three theorems (4.29, 5.10 
and 5.15). These state broadly: 

(i) A basic simplex weighted trapezoidal product rule does have an Euler- 
Maclaurin expansion. 

(ii) This is an even expansion if the constituent rules are symmetric. 
(iii) The expansion terminates at a specified point if f(x) is a polynomial of 

particular degree. 
Only the third result is different in detail from the corresponding result for the 

hypercube. 
The theory as presented here suffers from several defects. First of all, the basic 

elements which are the basic simplex weighted product trapezoidal rules are not 
symmetric. Secondly, the proof of these various properties involves an excessive 
amount of manipulation of an elementary nature. Thirdly, naturally arising rules 
such as Rm')f are not covered directly by the theory and subsidiary calculations are 
necessary to produce precisely corresponding results. 

There are, of course, other branches of numerical analysis where the derivation of 
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aesthetically satisfying results involves a mass of unpalatable algebra. One branch 
is high-order Runge-Kutta integration. Another branch is the one-dimensional 
Euler-Maclaurin expansion in the case in whichf(x) includes an algebraic or logarith- 
mic singularity. In that branch, the initial publication by Navot [8] of results whose 
proof was most unaesthetic in 1960-1962 led ultimately to simpler proofs by Lyness 
and Ninham [7] and to more general results over a course of ten years. It is the authors' 
hope that the same sort of phenomenon may occur here. 

However, any easier approach must lead to the same curiosities in the results. 
The same exceptions to the general remarks about the degree of a two-dimensional 
rule as described in Section 6 must occur. Also, the fact that basic rules which are not 
of degree zero may be used in Romberg integration to form approximations of high 
polynomial degree must also form part of the theory. In the authors' view, the situation 
described at the end of Section 8 in which the element T' = 0 is included in theRomberg 
T-table epitomizes the difference between s-dimensional quadrature over the simplex 
and over the hypercube. 
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